Investigation of ripple-limited low-field mobility in large-scale graphene nanoribbons
نویسندگان
چکیده
Investigation of ripple-limited low-field mobility in large-scale graphene nanoribbons" (2013).
منابع مشابه
Direct growth of graphene nanoribbons for large-scale device fabrication.
Graphene being a zero band gap material hinders the use of its intrinsic form for many applications requiring a moderate band gap, such as field effect transistors and optoelectronic devices. Here we demonstrate a scalable method based on chemical vapor deposition for the direct growth of well-registered graphene nanoribbons on SiO(2) substrates with precise control over their width, length, an...
متن کاملMobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbons and from acoustic phonons are as important as line-edge roughness scattering. The relative importance of these scattering mechanisms varies with ...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملSignificantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width
When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer ...
متن کاملAtomic-layer-deposited nanostructures for graphene-based nanoelectronics
Graphene is a hexagonally bonded sheet of carbon atoms that exhibits superior transport properties with a velocity of 108 cm /s and a room-temperature mobility of 15 000 cm2 /V s. How to grow gate dielectrics on graphene with low defect states is a challenge for graphene-based nanoelectronics. Here, we present the growth behavior of Al2O3 and HfO2 films on highly ordered pyrolytic graphite HOPG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014